

30 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

 equations in an astonishing O(1) time complexity [5]–[8].

The discovery and physical realization of memristors

has inspired the development of efficient approaches to

implement neuromorphic computing systems that can

mimic neuro-biological architectures and perform high-

performance computing for deep neural networks and

optimization algorithms [9].

The similarity between the programmable resistance

state of memristors and the variable synaptic strengths

of biological synapses facilitates the circuit realization

of neural network models [10]. Nowadays, artificial neu-

ral networks have become an extremely popular ma-

chine learning tool with a wide spectrum of applications,

ranging from prediction/classification, computer vision,

natural language processing, image processing, to sig-

nal processing [11]. Encouraged by its success, many

researchers have attempted to design memristor-based

computing systems to accelerate neural network training

[12]–[22]. In [12], [13], memristor crossbars were used to

form an on-chip training circuit for an autoencoder, an

artificial neural network with one hidden layer. Training

a multi-layer neural network requires the implementa-

tion of a back-propagation algorithm [23] for synaptic

weight update. Such an implementation using memristor

crossbars was discussed in [14]–[18]. In [19], [20], a mem-

ristor-based neural network was proposed by using an

off-chip training approach where synaptic weights are

pre-trained in software. This approach avoided the com-

plexity of mapping the back-propagation algorithm onto

memristors but did not fully utilize the computational

advantages of memristors. In [21], [22], research efforts

were made to overcome hardware restrictions, such as

scalability and routing congestion, to design memristor-

based large neural networks.

In addition to artificial neural networks, memristor-

based computing systems have also been proposed and

analyzed for sparse coding, dictionary learning, and

compressive sensing [24]–[30]. These applications share

a similar sparse learning framework, where a sparse

solution is sought to minimize a certain cost function.

In [24], a sparse coding algorithm was mapped to mem-

ristor crossbars. In [25]–[29], memristors were used to

achieve on-chip acceleration of dictionary learning algo-

rithms. However, the algorithms required the memristor

network to be programmed multiple times due to the gra-

dient update step which resulted in computation errors

caused by device variations. In [27], redundant memris-

tors were employed to suppress these device variations.

Besides sparse learning, memristor crossbars have also

been considered for implementing and training a proba-

bilistic graphical model [31] and image learning [32], [33].

Although memristor-inspired artificial intelligence (AI)

applications are different from one another, the common

underlying theme is the design of a mathematical pro-

gramming solver for an optimization problem specified

by a machine learning or data processing task. Examples

include linear programming for portfolio optimization

[34], nonlinear programming for regression/classifica-

tion [35], and regularized optimization for sparse learn-

ing [36]. Therefore, a general question to be answered

in this context is: how can one design a general memris-

tor-based computation framework to accelerate the optimi-

zation procedure?

The interior-point algorithm is one of the most com-

monly-used optimization approaches implemented in

software. It begins at a point in the interior of the feasible

region, applies a projective transformation so that the

current interior point is the center of projective space,

and then moves in the direction of the steepest descent

[37]. However, inherent hardware limitations prevent

a direct mapping from the interior-point algorithm to

memristor crossbars. First, a memristor crossbar only

allows square matrices with nonnegative entries during

computation, since the memristance is always nonnega-

tive. Second, the memristor crossbar suffers from hard-

ware variations, which degrade the reading/writing ac-

curacy of memristor crossbars. To circumvent the first

difficulty, additional memristors were used to represent

negative elements of a square matrix [8], [38], [39]. In

particular, the work [8] presented a memristor-based

linear solver using the interior-point algorithm, which,

however, requires programming of the resistance state

of memristors at every iteration. Consequently, the lin-

ear solver in [8] is prone to suffering from hardware

variations. Therefore, to successfully design memris-

tor-based optimization solvers, it is crucial to co-op-

timize algorithm, device and architecture so that the

advantages of memristors can be fully utilized and the

design complexity and the non-ideal hardware effects

can be minimized. Our previous work [7], [30] showed

that the alternating direction method of multipliers

(ADMM) algorithm can take advantage of the hard-

ware implementation of memristor crossbars. With the

aid of ADMM, one can decompose a complex problem

into subproblems that require matrix-vector multiplica-

tions and solution of systems of linear equations. The

decomposed operations are more easily mapped onto

memristor crossbars. In this paper, we discuss how to

S. Liu is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48019 USA. (e-mail: lsjxjtu@umich

.edu.) Y. Wang, M. Fardad and P. K. Varshney are with the Department of Electrical Engineering and Computer Science, Syracuse University (e-mail:

{makan,ywang393,varshney}@syr.edu.)

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 31

use the idea of ADMM to design memristor-based opti-

mization solvers for solving linear programs, quadratic

programs and sparse optimization problems. Different

from the interior-point algorithm, memristor crossbars

are programmed only once, namely, independent of ADMM

iterations. Therefore, the proposed memristor-based

optimization framework is of highly resilient to random

noise and process variations.

In addition to designing a memristor-based optimiza-

tion solver, we also discuss the application of memristors

to solving eigenvalue problems. It is worth mentioning

that computation of eigenvalues/eigenvectors is the key

step in many AI applications and optimization problems,

e.g., low-dimensional manifold learning [40], and semi-

definite projection in semidefinite programming [41]. In

this paper, we present a generalization of the power itera-

tion (PI) method using memristor crossbars. Convention-

ally, PI only converges when the dominant eigenvalue is

unique. Here, we adopt the Gram-Schmidt procedure [42]

to handle convergence issues in the presence of multiple

dominant eigenvalues.

The rest of the paper is organized as follows. In Sec-

tion II, we review the memristor technology for solving

systems of linear equations. In Section III, we discuss

the idea of ADMM for convex optimization. In Section

IV, we derive memristor-based solvers for linear and

quadratic programming. In Section V, we apply the

memristor technology for sparse optimization. In Sec-

tion VI, we extend PI using memristors for eigenvalue/

eigenvector computation. In Section VII, we summarize

the topics presented in the paper and discuss future

research directions. We anticipate that this paper will

inspire proliferation of memristor-based technologies,

and fully utilize its extraordinary potential in emerging

AI applications.

II. Memristors in Solving Systems

of Linear Equations

A memristor has the unique property of recording the

profile of excitations on the device. That is, the state

(memristance) of a memristor changes only when a cer-

tain voltage higher than a threshold is applied at its two

terminals. This memristive property makes it an ideal

candidate for use as non-volatile memory [43], [44].

Physical memristors can be fabricated in a high density

grid, and the resulting memristor crossbar structure

is attractive for performing matrix-vector operations

due to its high degree of parallelism [19]. Fig. 1 shows

an example of array fabrication and its utility in matrix-

vector computation. Here a 64 128# memristor array is

integrated with a foundry made CMOS substrate. The

memristor device shown in Fig. 1 is based on a HfO2

device that has nearly 100% fabrication yield [45]. The

 resistance state of each memristor can be tuned contin-

uously and leads to the conductance distribution of the

array used in matrix-vector multiplication. We elaborate

on the technical details on the memristor technology in

the following.

In general, a N N# memristor crossbar structure

is illustrated in Fig. 2, where a memristor is connected

between each pair of horizontal word-line (WL) and ver-

tical bit-line (BL). This structure can be implemented

with a small footprint, and each memristor can be re-

programmed to different resistance states by controlling

the voltage of WLs and BLs [5], [46], [47]. Let VI denote a

vector of input voltages on WLs. We obtain the current at

each BL by measuring the voltage across a resistor with

conductance .gs If the memristor at the connection be-

tween WLi and LB j has a conductance of ,g ,i j then the

output voltage on the jth BL V ,jO is given by [5],

,

g

g

g g

g
V V,

, ,
j

ij

i

N

j

s ij

i

N

N j

1

1

1

O Ig=

+

= =

> H/ /

(a)

20

40

60

80

100

120

20 40 60
300

400

500

600

700

800

900

C
o
n
d
u
c
ta

n
c
e
 (

u
S

)

(b)

Figure 1. Example of circuits fabrication and computation.

(a) An optical micrograph of a 64 128# memristor array in-

tegrated with foundry made CMOS chip. (b) An example of

matrix-vector computation using the 64 128# array.

32 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

or equivalently,

 , ,

g g

1diagV CV C G

s ij

i

N

j

N
T

1 1

O I= =

+

= =

f p* 4/
 (1)

where ({ })xdiag i i
N

1= denotes a diagonal matrix with di-

agonal entries , , , ,x x xN1 2 f and G is the conductance

matrix of memristors whose (,)i j th entry is given by .g ,i j

In (1), the desired coefficient matrix C can be realized

by adjusting memristor conductivities { }g ,i j and the bias

resistor’s conductance .gs In order to avoid out-of-range

coefficients in the memristor crossbar, a pre-scaling step

is required to scale all matrix coefficients to fall into the

memristors’ conductance range. In this manner, one can

perform matrix-vector multiplications through a pre-

configured (or programmed) memristor crossbar.

Reversing the above operation, the memristor cross-

bar structure can also solve a system of linear equa-

tions [6]. Here, we assume that the solution exists and

is unique. It is clear from (1) that if we apply VO on BLs,

then VI on WLs becomes the solution of the linear sys-

tem described by a pre-configured memristor network.

An appealing property of the memristor-based linear

equation solver is its high computational efficiency,

an astonishing O (1) time complexity [15], since the

matrix-vector multiplication (or its reverse operation)

is performed in a parallel fashion. While this structure

provides significant computational advantages, there

are challenges introduced by the hardware restric-

tions of memristors. First, in the linear system (1), only

a non-negative coefficient matrix can be mapped onto

memristors. Second, a memristor crossbar is size-lim-

ited (e.g., 1024 1024# or 2048 2048#) due to manufac-

turing and performance considerations [10]. Third, a

memristor crossbar suffers from hardware variations

that introduce computational errors while performing

matrix-vector operations. In what follows, we elaborate

on the aforementioned challenges and present some

possible solutions.

Since only non-negative coefficients can be mapped

to memristors, it is essential to design a general mecha-

nism that can deal with negative coefficients. In previous

Vertical Bit Line

Conductance

Between WL and BL

Single Memristor Device

Horizontal

Word Line

Resistor

Output Voltage

In
p
u
t
V

o
lt
a
g
e

Undoped Doped– +

ROFF RON

VOVO,1

VI,1

VI

VI,2

VI,3

VI,i

VI,i+1

VI,N

VO,2 VO,3 VO,j– VO,N–1 VO,NVO,j

rs rs rs rs rs rs rs

BLj

WLi

Figure 2. Illustration of a memristor crossbar.

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 33

work [5], [17] it has been suggested that negative num-

bers in a memristor system can be represented by using

two identical crossbars. Specifically, the weight matrix

C is split into two parts C1 and C2 so that ,C C C1 2= -

where () , () ,C C C C1 2= = -+ + and () { , }maxx x0=+ is a

positive operator taken elementwise for a matrix argu-

ment. Given nonnegative matrices C1 and ,C2 the ma-

trix-vector multiplication (1) can be obtained through

the subtraction C V C V1 I 2 I- [38], [39]. Instead of using

two identical crossbars, we can eliminate the negative

numbers by introducing auxiliary variables in the linear

system (1),

()

,V CV
C

D

B

I

V

V

V

0N N
O I

I

I

O
&= =

+

rr r

; ; ;E E E (2)

where V R
N

I !
r

r

 is a newly introduced variable, Nr is the

number of nonzero columns of ()C- + (namely, the num-

ber of columns of C that contain negative elements),

B R
N N

!
r is formed by nonzero columns of () ,C- +

D R
N N

!
#r is a submatrix of IN whose row indices are giv-

en by column indices of nonzero columns of () ,C- + and

0Nr is a zero vector of size .Nr In Table I, we show that (1)

can be recovered from (2) by eliminating .VI
r We stress

that compared to the use of an identical memristor

crossbar (leading to N N2 2# memristor network), the

proposed scheme (2) requires fewer memristors, result-

ing in the memristor network of size () (),N N N N#+ +r r

where .N N#r

We remark that a memristor crossbar is size-limited

due to manufacturing and performance considerations

[10]. To improve its scalability, analog network-on-chip

(NoC) communication structures can be adopted to ef-

fectively coordinate multiple memristor crossbars for

supporting large-scale applications [10], [20], [48], [49].

Data transfers within the NoC structure maintain analog

form and are managed by the NoC arbiters. Two poten-

tial analog NoC structures for multiple memristor cross-

bars are presented in Fig. 3. Fig. 3(a) shows a hierarchical

structure of memristor crossbars [10], where four cross-

bar arrays are grouped and controlled by one arbiter,

and those groups again form a higher-level group con-

trolled by a higher-level arbiter. Fig. 3(b) shows a mesh

network-based structure of memristor crossbars, which

resembles a mesh network-based NoC structure in multi-

core systems [49].

Furthermore, parameters of a memristor crossbar

may differ from the target values due to variability in

the fabrication process, environmental noise, and signal

fluctuations from power supplies and neighboring wires

[50]. Several methods have been proposed to mitigate

these impairments in hardware [19], [27], [28], [30], [51].

In [19], [51], feedback programming techniques were

used to improve the writing accuracy in memristor

crossbars. In [28], a read peripheral circuitry that func-

tions as an analog-to-digital converter was used to elim-

inate analog distortions. In [27], multiple memristors

were introduced to update a single weight. This method

statistically averages out the conductance variations in

Table 1.
Illustration of linear mapping (2).

•    ,() ()C C C= - -+ +  which yields  .() ()V C V C VO I I= - -+ +

•   Let  { , , , }i i iN1 2 f r  denote the indices of nonzero 
columns of () .C- +  Definitions of  [, ,]B b bN1 f= r  and 

[, ,]D e ei i
T

N1 f=  in (2) give

() .C b e BDj

j

N

i
T

1
j- = =+

=

r

/

•    ()()V C V BDV V C V BVO I I O I I(= - = ++ +
r  with 

,V DVI I=-r  which yields (2).

Arbiter

ArbiterArbiter

Arbiter

ArbiterArbiter

Arbiter

Arbiter Arbiter

1

2

2

1

(a)

(b)

Figure 3. Examples of NoC structures coordinating

 multiple memristor crossbars. (a) Four crossbar arrays are

grouped and controlled by one arbiter. The resulting higher-

level group is controlled by a higher-level arbiter. (b) Mesh

 network-based structure of memristor crossbars.

34 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

both time and space. However, it requires more memris-

tors and higher communication overhead. In addition to

circuit-level techniques [19], [27], [28], [51], we will show

that the non-ideal effects caused by hardware varia-

tions can also be mitigated by optimizing the algorithm

prior to mapping to memristor crossbars.

III. Convex Optimization and ADMM

Although memristor-based AI applications are different

such as sparse learning and dictionary learning [24]–

[30], the principle of designing memristor-based com-

putation accelerators is the same, namely, recognizing

the optimization problem underlying the learning task

and mapping the corresponding optimization algorithm

onto a memristor network. In what follows, we provide

some background on mathematical programming and

focus on a solver called alternating direction method of

multipliers (ADMM).

A. Preliminaries on Convex Optimization and ADMM

In general, an optimization problem can be cast as

(),

,

fminimize

subject to

x

x X
x

! (3)

where x R
n

! is the optimization variable, ()f $ denotes

the cost function to be minimized, and X denotes a con-

straint set. In this paper, we focus on the convex version

of problem (3), where ()f $ is a convex function and X is

a convex set [37]. In convex programming, a local mini-

mum given by a stationary point of (3) implies the global

optimality. Convex optimization forms the foundation of

many AI applications [35].

There exist many algorithms to solve convex optimi-

zation problems, such as gradient-type first-order meth-

ods [52], and primal-dual interior-point (second-order)

methods [37]. Compared to the conventional optimiza-

tion methods, ADMM has drawn great attention in the

last ten years [41], [53]. The main advantage of ADMM

is that it allows us to split the optimization problem into

subproblems, each of which can be solved efficiently

and, in some cases, analytically.

A standard problem that is suitable for the applica-

tion of ADMM is given by

() ()

,

f gminimize

subject to

x y

Ax By c 0
x,y

+

+ + = (4)

where x R
n

! and y R
m

! are optimization variables, ()f $

and ()g $ are convex functions, and , ,A BR R
l n l m

! !

and c R
l

! are appropriate coefficients associated

with a system of l linear equality constraints. Problem

(4) reduces to problem (3) when , , ,0A I B I cn m l= =- =

and ()g $ is an indicator function on the convex set

,X namely,

 ()g
0 if

otherwise.
y

y X

3

!

= ' (5)

Here In denotes the n n# identity matrix, and 0n is the

n 1# vector of all zeros. In what follows, while referring

to identity matrices and vectors of all ones (or zeros),

their dimensions are omitted for simplicity but can be in-

ferred from the context. ADMM is an iterative algorithm,

and its kth iteration is given by [41]

() () ()arg min f

2

x x Ax By c

Ax By c

k k T k

k

1

2
2

x
n

t

= + + +

+ + +

+ $

.

(6)

 () () ()arg min gy y Ax By ck k T k1 1

y
n= + + +

+ +$ (7)

2

Ax By ck 1
2
2t

+ + +
+ . (8)

 (),Ax By ck k k k1 1 1nn t= + + +
+ + + (9)

where n is the Lagrangian multiplier (also known as the

dual variable), t is a positive weight to penalize the aug-

mented term associated with the equality constraint of

(4), and 2$ denotes the 2, norm. The ADMM algorithm

terminates when an e -accuracy is achieved, namely,

|| || ,x yk k
2 # e- and || || .x xk k 1

2 # e-
- ADMM has a conver-

gence rate (/)O K1 for general convex optimization prob-

lems [54], where K is the number of iterations. In other

words, given the stopping tolerance ,e ADMM requires

(/)O 1 e iterations to converge. We remark that ADMM

has a faster convergence rate than many gradient-type

first-order algorithms, which often have the conver-

gence rate of (/) .O K1 In the next section, we will show

that ADMM provides a suitable framework for mapping

to a memristor network.

IV. Memristor-Based Linear

and Quadratic Optimization Solvers

In this section, we employ memristor crossbars to solve

linear and quadratic programs. Linear programs (LPs)

and quadratic programs (QPs) are the most common

optimization problems that are encountered in many

applications such as resource scheduling, intelligent

transportation, portfolio optimization, smart grid and

signal processing [55]–[58]. The interior-point algo-

rithm is a standard method to solve LPs as well as QPs

[37], with ~O n n .3 3 5^ h time complexity [59], where n is

the number of optimization variables. The conventional

interior-point algorithm running on CPUs/GPUs has low

degree of parallelism. By contrast, as we next demon-

strate, ADMM breaks up optimization problems into

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 35

subproblems involving the solution of linear equations,

which lend themselves to the use of memristors for ef-

ficient computation.

A. Linear Optimization With Memristors

The standard form of LP is expressed as follows,

, ,0

minimize

subject to

d x

Gx h x

T

x

$= (10)

where x R
n

! is the optimization variable, ,d GR
n

! !

R
l n# and h R

l
! are given parameters, and the last in-

equality constraint represents the elementwise inequal-

ities x 0i $ for , , , .i n1 2 f= In this paper, we assume

that G is of full row rank.

We begin by reformulating problem (10) as the ca-

nonical form (4) that is amenable to the use of ADMM

algorithm,

() ()

,

p gminimize

subject to

d x x y

x y

T

x,y
+ +

= (11)

where y R
n

! is a newly introduced optimization vari-

able, and similar to (5), p and g are indicator functions,

with respect to constraint sets { | }x Gx h= and { | },0y y $

respectively. If we set () (), ,f p Bx d x x A I IT
= + = =-

and 0c = , then problem (11) is the same as problem (4).

Based on (11), the ADMM steps (6)–(9) become

() () ()arg min p

2

x d x x x y

x y

k T k T k

k

1

2
2

x
n

t

= + + -

+ -

+ $

. (12)

() () ()arg min g

2

y y x y

x y

k k T k

k

1 1

1
2
2

y
n

t

+ -

+ -

+ +

+

= $

. (13)

 () .x yk k k k1 1 1nn t= + -
+ + + (14)

As we show next, the primary advantage of employing

ADMM here is that problem (12) can be readily solved

using memristor crossbars, and problem (13) yields a

closed-form solution that only involves elementary vec-

tor operations.

Problem (12) is equivalent to

|| ||

,
2

minimize

subject to

x

Gx h

2
2

x

t
a-

= (15)

where : (/)() .1y dk ka nt= - + The solution of problem

(15) is determined by its Karush-Kuhn-Tucker (KKT)

conditions [37], () ,0x GTa mt - + = and ,Gx h= where

R
l

!m is the Lagrangian multiplier. The KKT conditions

imply a system of linear equations

 , .
0

C
x

h
C

I

G

GTa

m

t t
= =; ; ;E E E (16)

Based on (2), the linear system (16) can be efficiently

mapped to memristor crossbars by configuring their

memristance values according to the matrix .C

On the other hand, problem (13) is equivalent to

|| ||

,
2

0

minimize

subject to

y

y

2
2

y

$

b
t

-

 (17)

where : (/) .1xk k1b nt= +
+ The solution of problem (17)

is determined by the projection of b onto the nonnega-

tive orthant,

 () .yk 1 b=+

+ (18)

Note that the positive part operator ()$ + in (18) can be

readily implemented using elementary logical or digi-

tal operations.

We summarize the memristor-based LP solver in Fig. 4.

Although LP is a relatively simple optimization problem,

the LP solver illustrates our general idea and paves the

way for numerous memristor-based applications in op-

timization problems. Our solution framework offers two

major advantages. First, in the linear system (16), the co-

efficient matrix C is independent of the ADMM iteration

so that memristors need to be configured only once. This

feature makes it more attractive than gradient-type and

interior-point algorithms, where memristors have to be

reconfigured at each iteration [27]. Second, ADMM splits

a complex problem into subproblems, each of which is

easier to solve and implement in hardware.

B. Quadratic Optimization With Memristors

QP is an optimization problem whose objective and con-

straint functions involve quadratic and/or linear terms.

There exist many variants of QP, such as a second-order

cone program (SOCP) and a quadratically constrained

quadratic program (QCQP) [37]. In this section, we fo-

cus on the design of a memristor-based solver for SOCP,

Iterate Until Convergence

Updated x k+1

Updated y k+1Updated µk+1

M: Memristor Crossbars
with Mapped CSolve Linear

System in (15)

Using M

Summing

Amplifier

Project Onto
Positive Orthant
in (17) Using a
Analog/Digital
Technology

Figure 4. Memristor crossbar based solution framework in

linear programming.

36 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

since it is possible to convert a QCQP into a SOCP, e.g.,

homogeneous QCQP that excludes linear terms [7].

SOCP is a convex program for minimizing a linear

cost function subject to linear and second-order cone

constraints,

, || || ,x

minimize

subject to

d x

Gx h x :()

T

n n1 1 2

x

#= - (19)

where x R
n

! is the optimization variable, G and h are

given parameters, x :()n1 1- denotes a vector that consists

of the first n 1- entries of ,x and xn is the nth entry

of .x The last constraint in (19) is known as the second-

order cone constraint.

Similar to (11), we can rewrite problem (19) in the ca-

nonical form (4) that is amenable to the ADMM algorithm

() ()

,

p gminimize

subject to

d x x y

x y

T

x,y
+ +

= (20)

where y R
n

! is the newly introduced optimization vari-

able, and p and g are indicator functions with respect

to constraint sets { | }x Gx h= and { ||| || },y y y:()n n1 1 2 #-

respectively.

Following (6)–(9), the ADMM algorithm for solving

problem (20) includes subproblem (15) with respect to

the variable ,x step (14) for updating dual variables ,n

and a specific y -minimization problem (8),

|| ||

|| || ,y
2

minimize

subject to

y

y :()n n

2
2

1 1 2

y

#

b
t

-

- (21)

where recall from (17) that (/) .1xk k1b nt= +
+ The so-

lution of problem (21) is given by projecting b onto a

second-order cone [53],

|| ||

|| ||

|| || | |,

0

y

:()

:()

:()

k

n n

n n

n n

1

1 1 2

1 1 2

1 1 2

#

#

$

b

b

b

b

b

b

b

b

=

-

+

-

-

-
u

* (22)

where
|| ||

, || || .1
:()

:() :()
n

n
n

T
n

T

2
1

1 1 2
1 1 1 1 2b

b
b b

b
= +

-

- -
u c m 6 @ Simi-

lar to the memristor-based LP solver, the ADMM step

(6) reduces to the solution of a system of linear equa-

tions that can be mapped onto memristor crossbars.

In the ADMM step (21), we can use peripheral circuits

including analog multipliers and summing amplifiers to

evaluate the vector norm in (22) [60], [61]; see schematic

illustration in Fig 5.

To summarize, one may exploit the alternating

structure of ADMM to design memristor-based opti-

mization solvers. The crucial property to enable this

is that ADMM helps in extracting parallel operations of

matrix/vector multiplication/addition which can be im-

plemented using memristor crossbars and elementary

hardware elements.

C. Performance Evaluation

In what follows, we present empirical results that show

the effectiveness of the proposed memristor-based opti-

mization framework to solve LPs and QPs. Since the pres-

ence of hardware variations leads to a reduced configu-

ration accuracy on memristor crossbars, the matrix C in

(16) is actually modified to ,CC R= +
u where R denotes

a random matrix whose elements are i.i.d. zero-mean

Gaussian random variables. The quantity || || /|| ||CF FR

then provides the level of hardware variations, where

||·||F denotes the Frobenius norm of a matrix. In the

presence of hardware variations, we compare the solu-

tion x above to the optimal solution x* obtained from

the off-the-shelf interior-point solver CVX [62], that

excludes the effect of hardware variation. We adopt

|| || /|| ||x x x* *
2 2- (averaged over 50 random trials) to mea-

sure the error between x and .x* In ADMM, the aug-

mented parameter and the stopping tolerance are set to

be { . , , , }0 1 1 10 100!t and .10 3e = -

In Fig. 6, we present the difference between the mem-

ristor-based solution and the variation-free interior-point

solution as a function of the level of hardware variations for

problems with dimension { , , }.n 100 600 1000! When the

hardware variation is excluded, the memristor-based solu-

tion yields the same accuracy as the interior-point solution.

As the problem size or the hardware variation increases,

the difference from the interior-point solution increases.

However, the induced error is always below 5%. In Fig. 7, we

further show the convergence of the memristor-based solu-

tion framework as a function of the choice of the ADMM

parameter .t For each value of ,t 50 random trials were

performed, each of which involved 10% hardware varia-

tion. We find that the convergence of the memristor-based

approach (to achieve e -accuracy solution) is robust to

hardware variations and the choice of ADMM parameter .t

Compared to LP, QP requires more iterations to converge

due to its higher complexity. Moreover, a moderate choice

of ,t e.g., 1t = in this example, improves the convergence

of the memristor-based approach.

V. Memristor-Based Sparse Learning

Sparse learning is concerned with the problem of finding

intrinsic sparse patterns of variables to be optimized.

β1

βn

βn /β1:(n)2

βn–1

Multiplier

Multiplier
Summing

Amplifier
Sqrt Divider

..
..

Figure 5. Schematic illustration of the hardware system for

calculating yk 1+ in (22).

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 37

This problem is central to machine learning and big-da-

ta processing. Examples of applications include model

selection in regression/classification, dictionary learn-

ing, matrix completion in recommendation systems, im-

age restoration, graphical modelling, natural language

processing, resource management in sensor networks,

and compressive sensing [36], [63]–[65]. It is often the

case that we can cast sparse learning as an optimiza-

tion problem that involves sparsity-inducing regulariz-

ers, such as the 1, norm, mixed 1, and 2, norms, and

the nuclear norm [36]. In this section, we focus on the

problem of robust compressive sensing (CS), which

recovers sparse signals from noisy observations [66].

We remark that CS yields a problem formulation similar

to LASSO [67], sparse coding [24] and sensor selection

problems [68]. Previous research efforts [66], [69]–[74],

focused on software-based approaches for sparse sig-

nal recovery, with the support of CPUs/GPUs. Here we

discuss approaches to employ memristor crossbars to

design CS solvers.

A. Preliminaries on CS

Let z R*
p

! be a sparse or compressible vector, e.g., a

digital signal or image, to be recovered. We have access

to measurements ,h Hz v*= + where ,q p% H R
q p

!
is

a given measurement matrix, such as a random Gaussian

3,000

2,500

2,000

1,500

1,000

500

0

0.1 1 10 100

ADMM Parameter ρ

(a)

0.1 1 10 100

ADMM Parameter ρ

(b)

N
u
m

b
e
r

o
f
A

D
M

M
 I
te

ra
ti
o
n

N
u
m

b
e
r

o
f
A

D
M

M
 I
te

ra
ti
o
n

10

9

8

7

6

5

4

3

2

1

× 104

Figure 7. Number of ADMM iterations to obtain an e-accuracy solution for different values of ADMM parameter t under 10%

hardware variation. (a) Memristor-based LP solver; (b) Memristor-based QP solver.

0.6

0.5

0.4

0.3

0.2

0.1

0

E
rr

o
r

C
o
m

p
a
re

d
 t
o

In
te

ri
o
r-

P
o
in

t
S

o
lu

ti
o
n
 (

%
)

0 1 2 3 4 5 6 7 8 9 10

Hardware Variation (%)

(a)

4

3.5

2.5

3

1.5

2

1

0.5

0

E
rr

o
r

C
o
m

p
a
re

d
 t
o

In
te

ri
o
r-

P
o
in

t
S

o
lu

ti
o
n
 (

%
)

0 1 2 3 4 5 6 7 8 9 10

Hardware Variation (%)

(b)

Dimension 100

Dimension 600

Dimension 1,000

Dimension 100

Dimension 600

Dimension 1,000

Figure 6. Solution accuracy versus level of hardware variations for different problem sizes { , , }.n 100 600 0001! (a) Memristor-

based LP solver. (b) Memristor-based QP solver with the same legend as (a).

38 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

matrix, and v R
q

! is a stochastic or deterministic error

with bounded energy || || .v 2 # p

The main goal of CS is to stably recover the unknown

sparse signal z* from noisy measurements .h It has

been shown in [75] that stable recovery can be achieved

in polynomial time by solving the convex optimization

problem for robust CS

|| ||

|| || ,

minimize

subject to

z

Hz h

1

2

z

p- (23)

where z R
n

! is the optimization variable, and ||·||1 de-

notes the 1, norm of a vector. In problem (23), the 1,

norm is introduced to promote the sparsity of z [70].

Note that problem (23) can also be formulated in the

form of LASSO or sparse coding [24], [67]

|| || || || ,minimize Hz h z2
2

1
z

c- +

where c is a regularization parameter that governs the

tradeoff between the least square error and the sparsity

of .z In what follows, we focus on the problem formula-

tion in (23).

B. Memristor-Based Accelerator For Solving

CS Problems

Similar to memristor-based linear and quadratic opti-

mization solvers, the key step to successfully applying

memristor crossbar arrays to CS problems is to extract

subproblems, with the aid of ADMM, that solve systems

of linear equations. By introducing three new optimiza-

tion variables ,s wR R
q p

! ! and ,u R
q

! problem (23)

can be reformulated in a way that lends itself to the ap-

plication of ADMM,

() || || ()

,

f p

0

minimize

subject to ,

z,s w u

z w 0 s u

1+ +

- = - =

(24)

where , ,z s w and u are optimization variables, and f

and p are indicator functions corresponding to the con-

straints of problem (23), namely,

 ()f
0

otherwise,
z,s

Hz s h

3

=
- =' (25)

and

 ()
|| ||

p
0

otherwise.
u

u 2

3

p
= ' (26)

In (24), the introduction of new variables s, w and u

together with the indicator functions (25)–(26) allows

us to split the original constrained problem into sub-

problems for solving systems of linear equations, and

elementary proximal operations related to the 1, norm

and the Euclidean ball constraint [53].

We recall from the standard form of ADMM given by (4)

that if we set , , , , ,g gx z s y w uT T T T T
1$ $ $< <= = = + l^ ^h h6 6@ @

,A BI I= =- and 0c = , then problem (4) reduces to the

CS problem (24). As a result, the ADMM step (6) with

respect to z and s can be written as

,

2 2
minimize

subject to

z s

Hz s h

1 2
2

2 2
2

,z s
< < < <a a

t t
- + -

- = (27)

where : (/) , : (/) , [,]1 1w uk k k k T T T
1 1 2 2 1 2a n a n n n nt t= - = - =

R
p q

!
+ is the vector of dual variables corresponding to

problem (24), and k is the ADMM iteration number. The

solution of problem (27) is given by KKT conditions:

,z HT
1m at t+ = ,s 2m at t- = and ,Hz s h- = where

R
q

!m is the Lagrangian multiplier corresponding to

problem (27). These form a system of linear equations

 , .C

z

s

h

C

I

0

H

0

I

I

H

I

0

p

q

q

T

q

1

2a

m

at

t

t

t= =

-

-> > >H H H (28)

Based on (2), the linear system (28) can be mapped onto

a memristor network by configuring its memristance

values. Recall that a programmed memristor crossbar

only requires a constant-time complexity O(1) to solve

problem (28).

The ADMM step (8) with respect to w and u becomes

 () ,p
2 2

minimize w u w u1 1 2
2

2 2
2

w,u
< < < < < <b b

t t
+ + - + - (29)

where : (/)1zk k
1

1
1b nt= +

+ and : (/) .1sk k
2

1
2b nt= +

+ Note

that problem (29) can be decomposed into two prob-

lems with respect to w and u :

,

, .
2

minimize

minimize subject to

w w

u u

1 1 2
2

2 2
2

2

w

u

< < < <

< < < < #

b

b

t

p

+ -

-

* (30)

Both problems in (30) can be solved analytically [30]

(/) (/) ,

{ , } ,min

1 11 1w

u

k

k

1
1 1

1
2 2

2 2

2
< <

< <

b b

b
b

b

t t

p

= - - - -

=

+

+ +

+*

(31)

where recall that $ +^ h is the positive part operator.

Similar to LPs and QPs, the hardware design of the

memristor-based CS solver mainly consists of two parts.

The first part is the memristor-based linear system solv-

er, in which memristor crossbars are only programmed

once since the coefficient matrix C in (28) is indepen-

dent of ADMM iterations. The second part is the digi-

tal or analog implementation of the solution to problem

(31). This requires the calculation of the 2, norm of a

vector that can be realized using elementary logic or

digital operations; similar to Fig. 5. The ADMM-based

solution exhibits low hardware complexity.

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 39

We finally remark that one can adjust the ADMM pa-

rameter t to avoid the hardware variation-induced singu-

larity for C in (28). This is supported by the invertibility of

the Schur complement of C [76], (/)() .1 I HHTt- + Spe-

cifically, if t is too large, the Schur complement approach-

es zero (towards singularity). If t is too small, the effect

of hardware variations on H is magnified. Therefore, an

appropriate choice of t enhances the robustness of mem-

ristor-based optimization solvers to hardware variations.

C. Performance Evaluation

Next, we empirically show the effectiveness of the pro-

posed solution framework for sparse signal recovery. As-

sume that the original signal z) is of dimension p 1024=

with { , , , , }s 10 50 100 150 200! nonzero elements. These

nonzero spike positions are chosen randomly, and their

values are chosen independently from the standard nor-

mal distribution. To specify the CS problem (23), a mea-

surement matrix H R
500 1024

!
with i.i.d. entries from

the standard normal distribution is generated, and set

10 3p = - . The vector of measurement noises v is drawn

from the normal distribution (, .)0 010 IN . To evaluate

the recovery performance, the following two measures

are employed a) the difference between the recovered

signal z and the true sparse signal ,z) namely, ,z z< <-
)

and b) the sparse pattern difference between z and .z)

All the performance measures are obtained by averag-

ing over 50 random trials. For ADMM, unless specified

otherwise, we set { . , , , }0 1 1 10 100!t and 10 3e = - for its

augmented parameter and stopping tolerance.

In Fig. 8, we present the performance of sparse sig-

nal recovery by using the memristor-based solution

framework. Fig. 8(a) shows the signal recovery error as

a function of the sparsity level s under different levels of

hardware variations. We compare the resulting solution

with the solution obtained from the orthogonal matching

0.35

0.3

0.25

0.15

0.05

0

0.1

0.2

E
rr

o
r

C
o
m

p
a
re

d
 t
o
 T

ru
e
 S

p
a
rs

e
 S

ig
n
a
l

0 20 40 60 80 100 120 140 160 180 200

Number of Nonzero Entries in Signal

6

5

4

2

0

1

3

S
p
a
rs

e
 P

a
tt
e
rn

 R
e
c
o
v
e
ry

 E
rr

o
r

(%
)

0 20 40 60 80 100 120 140 160 180 200

Number of Nonzero Entries in Signal

(a) (b)

(c) (d)

Hardware Vari. 2%

Hardware Vari. 0%

Hardware Vari. 5%

Hardware Vari. 10%

OMP, No Variation

Hardware Vari. 2%

Hardware Vari. 0%

Hardware Vari. 5%

Hardware Vari. 10%

OMP, No Variation

104

103

102

N
u
m

b
e
r

o
f
A

D
M

M
 I
te

ra
ti
o
n
s

0.1 1 10 100
ADMM Parameter ρElement Index of Signal

100 200 300 400 500 600 700 800 9001,000

100 200 300 400 500 600 700 800 9001,000

100 200 300 400 500 600 700 800 9001,000

100 200 300 400 500 600 700 800 9001,000

3
2
1
0

–1

3
2
1
0

–1

3
2
1
0

–1

3
2
1
0

–1

O
ri
g
in

a
l

O
M

P
M

e
m

ri
s
to

r

V
a
r

=
 2

%

M
e
m

ri
s
to

r

V
a
r

=
 1

0
%

Figure 8. Sparse signal recovery performance under different levels of hardware variation. (a) Error with respect to the true sig-

nal versus the sparsity level .s (b) Sparse pattern recovery error versus the sparsity level .s (c) Recovered signals with s 50=

nonzero entries. (d) Number of iterations required for convergence versus the ADMM parameter t .

40 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

pursuit (OMP) algorithm [77], a commonly used soft-

ware-based CS solver. We observe that the recovery ac-

curacy improves as the signal becomes sparser, namely,

s is smaller. This is not surprising, since a sparser signal

can be more stably recovered at the rate much smaller

than what is commonly prescribed by Shannon-Nyquist

theorem [70]. By fixing s, we observe that the recovery

accuracy decreases while increasing the level of hard-

ware variations. Although the presence of hardware

variations negatively affects the recovery accuracy,

the sparse pattern error shown by Figs. 8(b) and (c) is

acceptable, as it is below 6%. In particular, in Fig. 8(c) the

recovered signal yields almost the same sparse support

as that of the original signal even in the presence of 10%

hardware variation. These promising results show that

the memristor-based CS solver is quite robust to hard-

ware variations, and is able to provide reliable recovered

sparse patterns. Lastly, we investigate the convergence

of the memristor-based approach against different

values of the ADMM parameter .t Similar to Fig. 7, a

moderate choice of ,t namely, 10t = in this example, is

preferred over others as shown in Fig. 8(d).

VI. Power Iteration via Memristors:

Application to PCA

Principal component analysis (PCA) is the best-known

dimensionality-reduction technique to find intrinsic low-

dimensional manifolds from high-dimensional data [40].

The implementation of PCA requires the computation of

the principal eigenvalues and the corresponding eigen-

vectors of a symmetric matrix. The calculation of eigen-

values and eigenvectors is also motivated by optimiza-

tion problems, e.g., a projection onto semidefinite cones

in semidefinite programming [78]. Since power iteration

(PI) is a widely-used algorithm for eigenvalue analysis

[79], here we describe a memristor-based PI framework.

A. Preliminaries on PI

PI is an iterative algorithm that converges to the eigen-

vector associated with the largest eigenvalue of a matrix.

Let {(,)}ui i i
n

1m = denote a set of eigenvalue-eigenvector

pairs for matrix ,A R
n n

!
where we refer to ,1m regard-

less of its multiplicity, as the dominant eigenvalue. The

kth iteration of PI is given by [42]

 ,x
Ax
Ax

1
k

k

k

2

1

< <
=

-

-

 (32)

where x0 is an arbitrary starting vector. If ,k " 3 then

by (32), xk converges to the eigenvector ,u1 and thus

() /()x Ax x xk T k k T k converges to the largest eigenval-

ue .1m The convergence of PI is geometric, with ratio

| | | |/2 1m m [42]. Therefore, PI converges slowly if there is

an eigenvalue close in magnitude to the dominant eigen-

value. Moreover, if the largest eigenvalue is not unique,

say 1 2m m= with multiplicity 2, the limiting point xk fails

to converge to ,u1 and instead converges to a linear

combination of eigenvectors u1 and u2 [80]. Thus, it is

required that the memristor-based PI be able to address

the issue of repeated eigenvalues.

B. Memristor-Based PI

It is clear from (32) that the PI algorithm involves a)

matrix-vector multiplication ,Axk 1- and b) evaluation of

a vector norm. Based on (2), the first operation is easily

implemented using memristor crossbars. And the second

operation can be realized using elementary digital (or

analog) circuits [30]. The major challenge of customizing

PI for memristor implementation is to determine the mul-

tiplicity of the dominant eigenvalue and to find the corre-

sponding eigenvectors. In what follows, we show that with

the aid of Gram-Schmidt process such a problem can be

addressed via elementary matrix-vector operations.

We assume that the largest eigenvalue has multiplic-

ity s, namely, .s1 2 gm m m= = = Under s random initial

vectors, we denote by { }yi i
s

1= the converging vectors of

PI. It is known from [80] that { }yi i
s

1= are linear combi-

nations of eigenvectors { } .ui i
s

1= This implies two facts.

First, given p initial vectors, the resulting { }yi i
p

1= are

linearly independent if .p s# Therefore, we are able

to determine the number of repeated dominant eigen-

values by adding new columns to Yp until its rank

stops increasing where : [, ,],Y y yp p1 g= and its rank

can be determined by the singularity of .Y Yp p
T Second,

given the number of repeated eigenvalues, finding the

eigenvectors { }ui i
s

1= is equivalent to seeking an or-

thogonal subspace spanned by { } .yi i
s

1= This procedure

is precisely described by the Gram-Schmidt process.

Given a sequence of vectors { } ,yi i
s

1= the Gram-Schmidt

process generates a sequence of orthogonal vectors

{ }ui i
s

1= [42],

 , , , ,i s2u y
u u

y u
ui i

j
T

j

i
T

j

j

i

j

1

1

g= - =

=

-

/ (33)

where .u y1 1=

The major challenge of customizing power iteration for memristor

implementation is to determine the multiplicity of the dominant

eigenvalue and to find the corresponding eigenvectors.

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 41

By incorporating the Gram-Schmidt process (33),

the generalized PI algorithm is able to calculate the

dominant eigenvalue even if it is not unique. Once the

dominant eigenvalue 1m is found, the second largest

eigenvalue 2m can then be found by performing PI to

a new matrix ,A u uT
1 1 1m- known as a matrix deflation

[42]. Since both (32) and (33) only involve elementary

matrix-vector operations, it is possible to accelerate PI

by using memristors.

C. Performance Evaluation

In what follows, we demonstrate the empirical perfor-

mance of the proposed PI method to compute the domi-

nant eigenvalues/eigenvectors based on a synthetic

dataset and to perform PCA based on the Iris flower

dataset [81]. To specify the eigenvalue problem, let A

be a symmetric matrix of dimension .n 50= We assume

that the dominant eigenvalue is repeated k times, where

[,] .1 10k ! The proposed algorithm continues until a

10 4- -accuracy solution is achieved. Such an experiment

is performed over 50 independent trials. In Fig. 9, we pres-

ent the computation error, success rate, and the number

of iterations of PI against the multiplicity of the domi-

nant eigenvalue. Here the computation error is averaged

over 50 trials, and given by the difference between the

memristor-based solution m and the optimal solution *m

obtained from the eigenvalue decomposition. As we can

see, the proposed PI solver is of high accuracy with error

less than 10 6- . Moreover, at each trial, the proposed solv-

er correctly recognizes the number of repeated dominant

eigenvalues. And it converges fast, within 1000 iterations.

In Fig. 10, we apply the proposed PI solver to find the

principal components (PCs) of the Iris flower dataset,

which contains 150 iris flowers, and each flower involves

4 measurements, sepal length, sepal width, petal length

and petal width. These flowers belong to three different

species: setosa, versicolor, and virginica. We compare

the memristor-based approach with the standard pca

function in MATLAB. As we can see, both methods yield

the same 2 D data distribution and the same variance

of each PC. These results imply that the application of

memristor crossbars is of feasible for this problem.

VII. Conclusion and Future Directions

In this paper, we presented an overview of a memris-

tor-based optimization/computation framework that

exploits both memristors’ properties and algorithms’

structures. Popularly used algorithms, ADMM and PI,

were selected to illustrate memristor crossbar-based

implementations. We showed that ADMM is able to de-

compose a complex problem into matrix-vector multipli-

cations and subproblems for solving systems of linear

equations, which then facilitates memristor-based com-

puting architectures. To solve the eigenvalue problem

using memristor crossbars, we presented a generalized

version of the PI algorithm in the presence of repeated

dominant eigenvalues. The effectiveness of memristor-

based framework was illustrated via examples involving

LP, QP, compressive sensing and PCA. The framework

showed a great deal of promise with low computational

complexity and high resiliency to hardware variations.

Although there has been a great deal of progress

on the design of memristor-based computation accel-

erators, many questions and challenges still remain to

1.5

1

0.5

0

–0.5

–1

–1.5

P
C

2
,
V

a
ri
a
n
c
e
 5

.3
1

PC1, Variance 92.46

(a)

–4 –2 0 2 4

1.5

1

0.5

0

–0.5

–1

–1.5

P
C

2
,
V

a
ri
a
n
c
e
 5

.3
1

PC1, Variance 92.46

(b)

–4 –2 0 2 4

Memristor-Based

Approach MATLAB pca Func.

Setosa Versicolor Virginica

Figure 10. PCA results for the Iris flower dataset. (a) memris-

tor-based approach; (b) MATLAB pca function.

2

4

0

100

50

0

14
12
10

8
6

E
rr

o
r:

 | λ
–
λ
*|

S
u

c
c
e

s
s

R
a

te
 (

%
)

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 (

lo
g

2
)

× 10–7

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Multiplicity Time of Dominanat Eigenvalue

Figure 9. Performance of the proposed PI solver against

the multiplicity of the dominant eigenvalue.

42 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

 enable its adoption in real-life applications, e.g., enhanc-

ing memristor-based computing precision, co-optimizing

algorithm and hardware for nonconvex optimization, and

determining the feasibility of other problems that can

benefit from memristor-based hardware implementation.

Some specific future directions are discussed below.

First, memristor-based computing systems have not yet

demonstrated a competitively high computation accuracy

for solving practical problems in the presence of hardware

variations. To enhance precision, extra hardware resourc-

es would be needed. It is thus essential to optimize a full

hardware system under given hardware resources. Problems

of interest include selection of device-level components in

hardware implementation, and design of energy-efficient

on-chip communication infrastructure.

Second, the convergence of ADMM for nonconvex

optimization is not guaranteed. Therefore, new optimi-

zation algorithms, appropriate for hardware design, are

desired to address nonconvex problems, e.g., artificial

neural network based applications. Traditional algorithms

to train neural networks, such as back-propagation or

other gradient-based approaches, require updating of

the gradient information at each iteration. This leads to

frequent writing/reading operations on memristor cross-

bars and thus an increasing amount of energy consump-

tion. Motivated by that, innovation beyond the existing

algorithms is encouraged to co-optimize algorithm and

hardware for nonconvex optimization.

Third, in many scenarios, it is assumed that certain

solutions exist for the considered optimization and ma-

chine learning problems. However, it is possible that the

mapped problems on memristor crossbars are infeasi-

ble, e.g., no solution exists for an overdetermined linear

system. Therefore, a robust memristor crossbar-based

solver should be capable of identifying the feasibility of

problems. This identification procedure should be im-

plemented by using device-level components subject to

limited hardware resources.

Fourth, there is much work to be done to expand the

applications of memristor crossbars from the end-user

perspective. Some potential lucrative applications include

memristor-based smart sensors, small footprint intelli-

gent controllers in wearable devices, and on-chip training

platforms in autonomous vehicles and Internet of Things.

To sum up, memristor technology has the potential

to revolutionize computing, optimization and machine

learning research due to its orders-of-magnitude im-

provement in energy efficiency and computation speed.

Moving forward, engineers and scientists in different

fields, such as, machine learning, signal processing, cir-

cuits and systems, and materials should collaborate with

each other to make significant progress on this exciting

research topic.

Sijia Liu (S’13-M’16) received the B.S. and

M.S. degrees in electrical engineering

from Xian Jiaotong University, Xian, Chi-

na, in 2008 and 2011, respectively. He

received the Ph.D. degree (with All Uni-

versity Doctoral Prize) in electrical and

computer engineering from Syracuse University, Syracuse,

NY, USA, in 2016. He was a Postdoctoral Research Fellow at

the University of Michigan, before joining in IBM Research

AI. His research interests include resource management in

wireless sensor networks, optimization for machine learn-

ing, graph signal processing, and information fusion. He

received the Best Student Paper Award (third place) at the

42nd IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) in 2017. He was also among

the seven finalists of the Best Student Paper Award at the

Asilomar Conference on Signals, Systems, and Computers

in 2013. He was the winner of the Nunan research poster

competition at Syracuse University in 2012.

Yanzhi Wang is currently an assistant

professor at Syracuse University, start-

ing from August 2015. He received B.S.

degree from Tsinghua University in 2009

and Ph.D. degree from University of

Southern California in 2014, under super-

vision of Prof. Massoud Pedram. His research interests

include neuromorphic computing, energy-efficient deep

learning systems, deep reinforcement learning, embed-

ded systems and wearable devices, etc. He has received

best paper awards from International Symposium on Low

Power Electronics Design 2014, International Symposium

on VLSI Designs 2014, top paper award from IEEE Cloud

Computing Conference 2014, and best paper award and

best student presentation award from ICASSP 2017. He

has two popular papers in IEEE Trans. on CAD. He has re-

ceived multiple best paper nominations from ACM Great

Lakes Symposium on VLSI, IEEE Trans. on CAD, and Asia

and South Pacific Design Automation Conference., and In-

ternational Symposium on Low Power Electronics Design.

Makan Fardad (M’08) received the B.S.

degree from Sharif University of Tech-

nology, the M.S. degree in electrical

engineering from Iran University of Sci-

ence and Technology, and the Ph.D.

degree in mechanical engineering from

the University of California, Santa Barbara. He was a

postdoctoral associate at the University of Minnesota

before joining the Department of Electrical Engineering

and Computer Science at Syracuse University. His re-

search interests include modeling, analysis, and optimi-

zation of large-scale dynamical networks.

FIRST QUARTER 2018 IEEE CIRCUITS AND SYSTEMS MAGAZINE 43

Pramod K. Varshney (S’72-M’77-SM’82-

F’97) was born in Allahabad, India. He

received the B.S. degree in electrical

engineering and computer science

(with highest hons.), and the M.S. and

Ph.D. degrees in electrical engineering

from the University of Illinois at Urbana-Champaign,

USA, in 1972, 1974, and 1976, respectively. Since 1976,

he has been with Syracuse University, Syracuse, NY,

USA, where he is currently a Distinguished Professor of

electrical engineering and computer science and the Di-

rector of CASE: Center for Advanced Systems and Engi-

neering. He is also an Adjunct Professor of radiology at

Upstate Medical University, Syracuse. His current re-

search interests include distributed sensor networks and

data fusion, detection and estimation theory, wireless

communications, image processing, radar signal pro-

cessing, and remote sensing. He is the author of Distrib-

uted Detection and Data Fusion (New York, NY, USA:

Springer-Verlag, 1997). Dr. Varshney was a James Scholar,

a Bronze Tablet Senior, and a Fellow while at the Univer-

sity of Illinois. He is a Member of Tau Beta Pi. He received

the 1981 ASEE Dow Outstanding Young Faculty Award.

He was elected to the grade of Fellow of the IEEE in 1997

for his contributions in the area of distributed detection

and data fusion. He was the Guest Editor of the Special

Issue on Data Fusion of the IEEE Proceedings January

1997. In 2000, he received the Third Millennium Medal

from the IEEE and Chancellors Citation for exceptional

academic achievement at Syracuse University. He re-

ceived the IEEE 2012 Judith A. Resnik Award, an honor-

ary Doctor of Engineering degree from Drexel University

in 2014, and the ECE Distinguished Alumni Award from

UIUC in 2015. He is on the Editorial Boards of the Journal

on Advances in Information Fusion and IEEE Signal Pro-

cessing Magazine. He was the President of International

Society of Information Fusion during 2001.

References
[1] L. Chua, “Memristor: The missing circuit element,” IEEE Trans. Cir-

cuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The miss-

ing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008.

[3] R. Kozma, R. E. Pino, and G. E. Pazienza, “Are memristors the future

of AI?” in Advances in Neuromorphic Memristor Science and Applications.

New York: Springer, 2012, pp. 9–14.

[4] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,

H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for computing:

Myth or reality?” in Proc. IEEE Design, Automation and Test Europe Conf.

and Exhibition, 2017, pp. 722–731.

[5] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, “Memristor crossbar

based hardware realization of BSB recall function,” in Proc. Int. Joint

Conf. Neural Networks, June 2012, pp. 1–7.

[6] I. Richter, K. Pas, X. Guo, R. Patel, J. Liu, E. Ipek, and E. G. Friedman,

“Memristive accelerator for extreme scale linear solvers,” in Proc. Gov-

ernment Microcircuit Applications and Critical Technology Conf., 2015.

[7] A. Ren, S. Liu, R. Cai, W. Wen, P. K. Varshney, and Y. Wang, “Algo-

rithm-hardware co-optimization of the memristor-based framework for

solving SOCP and homogeneous QCQP problems,” in Proc. 22nd IEEE

Asia and South Pacific Design Automation Conf., 2017, pp. 788–793.

[8] R. Cai, A. Ren, Y. Wang, S. Soundarajan, Q. Qiu, B. Yuan, and P. Bog-

dan, “A low-computation-complexity, energy-efficient, and high-perfor-

mance linear program solver using memristor crossbars,” in Proc. 29th

IEEE Int. System-on-Chip Conf., 2016, pp. 317–322.

[9] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,

G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and

neural networks in hardware,” arXiv Preprint, arXiv:1705.06963, 2017.

[10] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y Wang, H. Jiang, M. Bar-

nell, Q. Wu, and J. Yang, “Reno: A high-efficient reconfigurable neuro-

morphic computing accelerator design,” in Proc. 52nd ACM/EDAC/IEEE

Design Automation Conf., 2015, pp. 1–6.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[12] R. Hasan and T. M. Taha, “Memristor crossbar based unsupervised

training,” in Proc. Nat. Aerospace Electronics Conf., June 2015, pp. 327–332.

[13] R. Hasan, T. Taha, and M. Z. Alom. (2016). A reconfigurable low

power high throughput streaming architecture for big data processing,

arXiv Preprint. [Online]. Available: https://arxiv.org/abs/1603.07400

[14] R. Hasan, T. M. Taha, and C. Yakopcic, “On-chip training of memris-

tor crossbar based multi-layer neural networks,” Microelectron. J., vol.

66, pp. 31–40, 2017.

[15] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network

training with resistive cross-point devices: design considerations,”

Frontiers Neurosci., vol. 10, 2016.

[16] S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A.

Cox, C. D. James, and M. J. Marinella, “Resistive memory device require-

ments for a neural algorithm accelerator,” in Proc. IEEE Int. Joint Conf.

Neural Networks, 2016, pp. 929–938.

[17] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, “Training itself:

Mixed-signal training acceleration for memristor-based neural net-

work,” in Proc. 19th Asia and South Pacific Design Automation Conf., 2014,

pp. 361–366.

[18] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky, “Mem-

ristor-based multilayer neural networks with online gradient descent

training,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2408–

2421, 2015.

[19] C. Yakopcic, R. Hasan, and T. M. Taha, “Flexible memristor based

neuromorphic system for implementing multi-layer neural network al-

gorithms,” Int. J. Parallel Emergent Distrib. Syst., pp. 1–22, 2017.

[20] X. Liu, M. Mao, B. Liu, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu, J.

Yang, H. Li, and Y. Chen, “Harmonica: A framework of heterogeneous

computing systems with memristor-based neuromorphic computing

accelerators,” IEEE Trans. Circuits Syst., vol. 63, no. 5, pp. 617–628, 2016.

[21] Y. Wang, W. Wen, B. Liu, D. Chiarulli, and H. H. Li, “Group scissor:

Scaling neuromorphic computing design to large neural networks,” in

Proc. 54th Annu. Design Automation Conf., 2017, p. 85.

[22] L. Ni, Z. Liu, H. Yu, and R. Joshi, “An energy-efficient digital reram-

crossbar based CNN with bitwise parallelism,” IEEE J. Exploratory Solid-

State Comput. Devices Circuits, 2017.

[23] L. Deng and D. Yu, “Deep learning: Methods and applications,”

Found. Trends Signal Process., vol. 7, no. 3–4, pp. 197–387, 2014.

[24] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse

coding with memristor networks,” Nature Nanotechnol., 2017.

[25] S. Yu and Y. Cao, “On-chip sparse learning with resistive cross-

point array architecture,” in Proc. 25th Ed. Great Lakes Symp. Very Large

Scale Integration, 2015, pp. 195–197.

[26] J.-S. Seo, B. Lin, M. Kim, P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty,

S. Vrudhula, S. Yu, J. Ye, and Y. Cao, “On-chip sparse learning accelera-

tion with CMOS and resistive synaptic devices,” IEEE Trans. Nanotech-

nol., vol. 14, no. 6, pp. 969–979, 2015.

[27] P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-S. Seo,

Y. Cao, and S. Yu, “Mitigating effects of non-ideal synaptic device char-

acteristics for on-chip learning,” in Proc. IEEE/ACM Int. Conf. Computer-

Aided Design, 2015, pp. 194–199.

[28] P. Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrud-

hula, J. S. Seo, Y. Cao, and S. Yu, “Technology-design co-optimization

of resistive cross-point array for accelerating learning algorithms on

chip,” in Proc. Design, Automation Test Europe Conf. Exhibition, Mar.

2015, pp. 854–859.

[29] D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula,

S. Yu, Y. Cao, and J. Seo, “Neurophysics-inspired parallel architecture

44 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2018

with resistive crosspoint array for dictionary learning,” in Proc. IEEE

Biomedical Circuits and Systems Conf., Oct. 2014, pp. 536–539.

[30] S. Liu, A. Ren, Y. Wang, and P. K. Varshney, “Ultra-fast robust com-

pressive sensing based on memristor crossbars,” in Proc. IEEE Int. Conf.

Acoustics, Speech and Signal Processing, 2017, pp. 1133–1137.

[31] S. B. Eryilmaz, E. Neftci, S. Joshi, S. Kim, M. BrightSky, H.-L. Lung,

C. Lam, G. Cauwenberghs, and H.-S. P. Wong, “Training a probabilistic

graphical model with resistive switching electronic synapses,” IEEE

Trans. Electron. Devices, vol. 63, no. 12, pp. 5004–5011, 2016.

[32] L. Chen, C. Li, T. Huang, Y. Chen, and X. Wang, “Memristor cross-

bar-based unsupervised image learning,” Neural Comput. Applicat., vol.

25, no. 2, pp. 393–400, 2014.

[33] L. Chen, C. Li, T. Huang, S. Wen, and Y. Chen, “Memristor crossbar

array for image storing,” in Proc. Int. Symp. Neural Networks, 2015, pp.

166–173.

[34] R. Mansini, W. Ogryczak, and M. G. Speranza, “Twenty years of lin-

ear programming based portfolio optimization,” Eur. J. Oper. Res., vol.

234, no. 2, pp. 518–535, 2014.

[35] C. M. Bishop, Pattern Recognition and Machine Learning. New York:

Springer, 2006.

[36] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with

sparsity-inducing penalties,” Found. Trends Mach. Learn., vol. 4, no. 1,

pp. 1–106, Jan. 2012.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,

U.K.: Cambridge Univ. Press, 2004.

[38] M. Hu, H. Li, Q. Wu, and G. Rose, “Hardware realization of neuro-

morphic BSB model with memristor crossbar network,” in Proc. IEEE

Design Automation Conf., 2012, pp. 554–559.

[39] D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrud-

hula, S. Yu, Y. Cao, and J.-S. Seo, “Neurophysics-inspired parallel archi-

tecture with resistive crosspoint array for dictionary learning,” in Proc.

IEEE Biomedical Circuits and Systems Conf., 2014, pp. 536–539.

[40] I. K. Fodor, “A survey of dimension reduction techniques,” Law-

rence Livermore Nat. Lab., Livermore, CA, Tech. Rep., 2002.

[41] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distrib-

uted optimization and statistical learning via the alternating direction

method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp.

1–122, 2011.

[42] G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3. JHU

Press, 2012.

[43] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Circuit elements with

memory: Memristors, memcapacitors, and meminductors,” Proc. IEEE,

vol. 97, no. 10, pp. 1717–1724, Oct. 2009.

[44] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,

“Nanoscale memristor device as synapse in neuromorphic systems,”

Nano Lett., vol. 10, no. 4, pp. 1297–1301, 2010.

[45] H. Jiang, L. Han, P. Lin, et al. “Sub-10 nm ta channel responsible for

superior performance of a HFO2 memristor,” Scientific Rep., vol. 6, 2016.

[46] L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu, “Distributed in-mem-

ory computing on binary RRAM crossbar,” ACM J. Emerging Technol.

Comput.Syst., vol. 13, no. 3, pp. 36, 2017.

[47] A. Heittmann and T. G. Noll, “Limits of writing multivalued resis-

tances in passive nanoelectronic crossbars used in neuromorphic cir-

cuits,” in Proc. Great Lakes Symp. Very Large Scale Integration, 2012, pp.

227–232.

[48] C. Yakopcic, R. Hasan, and T. M. Taha, “Hybrid crossbar architec-

ture for a memristor based cache,” Microelectron. J., vol. 46, no. 11, pp.

1020–1032, 2015.

[49] W. J. Dally and B. Towles, “Route packets, not wires: On-chip in-

terconnection networks,” in Proc. IEEE Design Automation Conf., 2001,

pp. 684–689.

[50] S. H. Jo, K.-H. Kim, and W. Lu, “High-density crossbar arrays based

on a SI memristive system,” Nano Lett., vol. 9, no. 2, pp. 870–874, 2009.

[51] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision

tuning of state for memristive devices by adaptable variation-tolerant

algorithm,” Nanotechnology, vol. 23, no. 7, 2012.

[52] D. P. Bertsekas, Nonlinear Programming. Athena Scientific: Bel-

mont, MA, 1999.

[53] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,

vol. 1, no. 3, pp. 123–231, 2013.

[54] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas-

Rachford alternating direction method,” SIAM J. Numer. Anal., vol. 50,

no. 2, pp. 700–709, 2012.

[55] J. S. Aronofsky, “Growing applications of linear programming,”

Commun. ACM, vol. 7, no. 6, pp. 325–332, 1964.

[56] H. Dahrouj and W. Yu, “Coordinated beam forming for the multicell

multi-antenna wireless system,” IEEE Trans. Wireless Commun., vol. 9,

no. 5, 2010.

[57] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, “Sparsity-aware sensor

collaboration for linear coherent estimation,” IEEE Trans. Signal Pro-

cessing, vol. 63, no. 10, pp. 2582–2596, 2015.

[58] Y. J. A. Zhang and A. M.-C. So, “Optimal spectrum sharing in mimo

cognitive radio networks via semidefinite programming,” IEEE J. Select.

Areas Commun., vol. 29, no. 2, pp. 362–373, 2011.

[59] A. Nemirovski. (2004). Interior point polynomial time methods in

convex programming, Lecture Notes. [Online]. Available:

[60] M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose, “BSB training scheme

implementation on memristor-based circuit,” in Proc. IEEE Symp.

Computational Intelligence Security Defense Applications, Apr. 2013,

pp. 80–87.

[61] W. Wen, C. R. Wu, X. Hu, B. Liu, T. Y. Ho, X. Li, and Y. Chen, “An EDA

framework for large scale hybrid neuromorphic computing systems,” in

Proc. 52nd ACM/EDAC/IEEE Design Automation Conf., June 2015, pp. 1–6.

[62] CVX Research, Inc. (2012, Aug.). CVX: Matlab software for disci-

plined convex programming, version 2.0. [Online]. Available: http://

cvxr.com/cvx

[63] S. Liu, “Resource management for distributed estimation via spar-

sity-promoting regularization,” Ph.D. dissertation, Syracuse Univ., Syra-

cuse, NY, 2016.

[64] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and opti-

mization for big data analytics: (Statistical) Learning tools for our

era of data deluge,” IEEE Signal Processing Mag., vol. 31, no. 5, pp. 18–

31, 2014.

[65] S. P. Chepuri and G. Leus, “Sparse sensing for statistical inference,”

Found. Trends Signal Processing, vol. 9, no. 3–4, pp. 233–368, 2016.

[66] E. J. Candes and M. B. Wakin, “An introduction to compressive sam-

pling,” IEEE Signal Processing Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[67] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.

Roy. Statist. Soc. Ser. B, pp. 267–288, 1996.

[68] S. Liu, E. Masazade, M. Fardad, and P. K. Varshney, “Sparsity-aware

field estimation via ordinary Kriging,” in Proc. IEEE Int. Conf. Acoustics,

Speech and Signal Processing, 2014, pp. 3948–3952.

[69] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, “Compres-

sive sensing: From theory to applications, a survey,” J. Commun. Netw.,

vol. 15, no. 5, pp. 443–456, Oct. 2013.

[70] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from

incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,

vol. 59, no. 8, pp. 1207–1223, 2006.

[71] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,

vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[72] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-

ciples: Exact signal reconstruction from highly incomplete frequency

information,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509,

Feb. 2006.

[73] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-

ing signal reconstruction,” IEEE Trans. Inform. Theory, vol. 55, no. 5, pp.

2230–2249, May 2009.

[74] W. Xu and B. Hassibi, “Efficient compressive sensing with determin-

istic guarantees using expander graphs,” in Proc. IEEE Inform. Theory

Workshop, Sept. 2007, pp. 414–419.

[75] E. Candès, “Compressive sampling,” in Proc. Int. Congr. Mathemati-

cians, 2006.

[76] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, vol. 7.

Denmark: Tech. Univ. Denmark, pp. 15.

[77] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-

surements via orthogonal matching pursuit,” IEEE Trans. Inform. Theo-

ry, vol. 53, no. 12, pp. 4655–4666, 2007.

[78] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM

Rev., vol. 38, no. 1, pp. 49–95, 1996.

[79] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods, vol. 23. Englewood Cliffs, NJ: Prentice

Hall, 1989.

[80] M. Panju, “Iterative methods for computing eigenvalues and eigen-

vectors,” Waterloo Math. Rev., 2011.

[81] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vec-

tor clustering,” J. Mach. Learn. Res., vol. 2, pp. 125–137, 2001.

